News

Contact Us

You are here:Home >> News >> Industry information...

Industry information

Tungsten Carbide Inserts

Time:2022-04-21 Views:277

Inserts for metal cutting

Tungsten-carbide inserts

Carbide is more expensive per unit than other typical tool materials, and it is more brittle, making it susceptible to chipping and breaking. To offset these problems, the carbide cutting tip itself is often in the form of a small insert for a larger tipped tool whose shank is made of another material, usually carbon tool steel. This gives the benefit of using carbide at the cutting interface without the high cost and brittleness of making the entire tool out of carbide. Most modern face mills use carbide inserts, as well as many lathe tools and endmills. In recent decades, though, solid-carbide endmills have also become more commonly used, wherever the application‘s characteristics make the pros (such as shorter cycle times) outweigh the cons (mentioned above). As well, modern turning (lathe) tooling may use a carbide insert on a carbide tool such as a boring bar, which are more rigid than steel insert holders and therefor less prone to vibration, which is of particular importance with boring or threading bars that may need to reach into a part to a depth many times the tool diameter.

Insert coatings

To increase the life of carbide tools, they are sometimes coated. Five such coatings are TiN (titanium nitride), TiC (titanium carbide), Ti(C)N (titanium carbide-nitride), TiAlN (titanium aluminium nitride) and AlTiN (aluminium titanium nitride). (Newer coatings, known as DLC (diamond-like carbon) are beginning to surface, enabling the cutting power of diamond without the unwanted chemical reaction between real diamond and iron.) Most coatings generally increase a tool‘s hardness and/or lubricity. A coating allows the cutting edge of a tool to cleanly pass through the material without having the material gall (stick) to it. The coating also helps to decrease the temperature associated with the cutting process and increase the life of the tool. The coating is usually deposited via thermal chemical vapor deposition (CVD) and, for certain applications, with the mechanical physical vapor deposition (PVD) method. However, if the deposition is performed at too high temperature, an eta phase of a Co6W6C tertiary carbide forms at the interface between the carbide and the cobalt phase, which may lead to adhesion failure of the coating.

Inserts for mining tools

Mining and tunneling cutting tools are most often fitted with cemented carbide tips, the so-called "button bits". Artificial diamond can replace the cemented carbide buttons only when conditions are ideal, but as rock drilling is a tough job cemented carbide button bits remain the most used type throughout the world.